Data Analytics in Internal Audit: An Imperative That Can’t Wait

May is International Internal Audit Awareness Month. We are Internal Audit Awareness Month logocelebrating with a series of blog posts focused on internal audit topics and the daily challenges and future of the internal audit profession.

 

Kyle Furtis

By Kyle Furtis
Managing Director, 
Internal Audit and Financial Advisory practice

 

 

 

Data analytics is a hot topic for internal audit departments. In our most recent Internal Audit Capabilities and Needs survey, data analytics figured among the top ten priorities for internal audit professionals, and CAEs ranked big data and business intelligence their number one priority. When we concluded that internal audit has arrived at a tipping point, it’s fair to say that data analytics is one of the items sure to cause the precipitous changes in how we, as internal auditors, do our work.

The profession is aware that businesses are now more data-driven than ever before, and that not utilizing this data can be detrimental to the proper evaluation of risks and controls and, more importantly, meeting stakeholder expectations. Even so, many internal audit departments are still struggling to come up with a formal methodology for integrating data analytics into their work. A formal data analytics program has a mission and a purpose. It also specifies how data is to be identified, acquired and analyzed to determine potential breakdowns of selected controls. But how do you begin?

One recommendation, based on observing successful data analytics programs within internal audit, is to start in areas where you’re comfortable with the data – whether it’s account reconciliations, journal entries, payables, fixed assets, payroll, human resources or threshold/limit controls. It’s easy to test data based on information you’re comfortable with. Just start in an area where enhanced visibility into the underlying data can add value to internal audit findings.

An interesting example of how to begin came from one internal audit shop I worked with. One of the required steps in each audit was for auditors to explain why they didn’t analyze data when performing testing of internal controls. The auditor’s manager and the director of internal audit were also required to sign off on the explanation. The idea was that inserting that step into the audit program forces auditors to think about data in advance of the audit, knowing that they have to answer that question. They couldn’t just give a flip answer, such as “We didn’t have the time,” or “This type of audit is not conducive to data analysis.” It really forces the internal audit staff to think about the risks, the data behind the risks, and whether some data analysis is appropriate.

For those already thinking ahead in this manner, I suggest below a high-level road map that outlines what data analytics may look like in a few years, and how to get there:

  • In Year 1, define your objectives for data analytics and set the basics: Train staff, identify tools, access and normalize data. You may need to prove the value of data analytics through strategies such as pilot and proof-of-concept programs.
  • In Year 2, identify opportunities to fully embed data analytics in internal audit. Define the data-access model, establish key performance indicators (KPIs), and integrate ad hoc analysis.
  • In Year 3 (and perhaps beyond), fully embed data analytics, broadening its use within the organization, and move toward data governance.
  • Next, engage in continuous analytics, fully integrating the analytics program and establishing standard reporting practices. Enable access to analytics reports throughout the enterprise and increase the level of data governance.
  • Finally, introduce predictive analytics. This would be a new frontier for internal auditors, as predictive analytics is not 100 percent accurate, and, as auditors, we’re used to high precision and accuracy when we analyze data – but it will yield interesting results that you can use for discussion.

Incorporating data analytics into internal audit won’t happen overnight. It’s a multistage process, with components introduced over the course of several years. As with everything, the most important step is the first one – so get started on defining your objectives now. By following the road map outlined here, the benefits of more efficient and effective audits will not be too far down the road.

One thought on “Data Analytics in Internal Audit: An Imperative That Can’t Wait

  1. Pingback: Relationships and Risks: A Closer Look at the CBOK Survey | The Protiviti View

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s